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The energy loss by an electron ejected from a deep level of an atom adsorbed on Ag�110� surface is
considered. It is shown that the dynamical effects in screening of the external field by a metal have to be taken
into account and the energy loss by the ejected electron depends on the surface-plasmon dispersion and on the
excitation energy. This effect can be observed with contemporary light sources.
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The subfemtosecond pulse technique1 initiated with the
paper by Hentschel et al.2 has its aim in study of superfast
relaxation processes caused by an abrupt change in the elec-
tron subsystem after an electron ejection. These investiga-
tions require development of theory, which provides deep
understanding of the experimental findings. At the current
level of computational technique, it seems to be possible to
build up rather realistic models of the phenomena with atoms
in the gas phase3 which make feasible, in principle, numeri-
cal control of the various aspects of the process. Application
of subfemtosecond technique to solids is of great interest
because a vast number of transient electron phenomena at
surfaces and in solids does evolve on a few femtosecond—
subfemtosecond time scale. Although the dynamics of elec-
trons in condensed-matter systems is very complicated, its
comprehensive understanding is necessary for development
of experimental investigations and their application in nano-
technology. The experimental study of this dynamics has re-
cently been performed.4 The computational simulations of
the process have been presented in Refs. 5 and 6.

In the processes with metal surfaces, the first feature to be
discussed is formation of the response charge density in the
metal and its influence on the ejected electron motion. In
textbooks �see, e.g., Ref. 7�, the interaction between a
charged particle with the electric charge q and a conducting
plane surface is described with the potential energy −q2 /4z,
where z is the particle coordinate perpendicular to the surface
�z=0 at the metal image plane, z is positive to vacuum�. This
potential energy has been obtained with the assumption of
infinitely slow motion of a charged particle from infinity to
the surface so that the electron system of the metal follows
its motion adiabatically. However, when an atom adsorbed
on a metal surface is ionized, the ejected electron does not
move slowly. The energy loss by a charged particle moving
with constant velocity at the vicinity of a metal surface has
been addressed in a number of papers �see, e.g., Ref. 8 and
the review,9 and references therein�. Nevertheless, to our
knowledge, electron motion with self-consistent account for
its energy loss has not been addressed as yet. Here we con-
sider this problem. At the first stage of the process, just after
the electron ejection at the point z0, the electron moves fast
in the field of the adsorbate core and the induced metal
charge distribution remains almost frozen. At this stage, the
attraction of the electron by the induced charge distribution

is greater than it is within the adiabatic treatment. Then, the
initial image charge decays �oscillating with the surface-
plasmon frequency� while the field due to the dynamical
screening of the moving electron arises �also with oscilla-
tions�. At the initial stage, the attraction force is approxi-
mately −�z+z0�−2 �atomic units are used� and only after some
time, which depends on the ejected electron energy and the
surface-plasmon decay rate, the force becomes close to the
value −�2z�−2. Thus, a theoretical consideration of the motion
of an electron ejected from an object adsorbed on a metal
surface requires a correct description of the time-dependent
dynamical screening of its field by the metal.

Here we treat the metal response within the basic theory
�Ref. 8 and references therein� and restrict ourselves with a
very simple one-pole description of the relevant metal-
surface dielectric function, taking its parameters from the
Ag�110� experiments.10 �The surface plasmon on this surface
is well pronounced and the corresponding plasmon fre-
quency �sp=3.7 eV is rather small.� The process under con-
sideration is essentially nonlocal in time and its description
implies solving the equation of motion of the electron self-
consistently with computation of the field acting on this elec-
tron, which depends on the entire previous history of its mo-
tion. For brevity, we consider only the case of one-
dimensional motion of an electron ejected from the adsorbate
perpendicular to the metal surface.

Assume that an electron, being at rest for t�0 at the point
R� 0= ���0=0 ,z0�, is kicked by a photon absorption to the en-
ergy E0. The basic equations describing the electron motion
reads

dz1

dt
= v�t� = �2�E�t� − Uc�z1�t�� − Uc

im�z1�t��� ,

dE

dt
= v�t�Fr�z1�t��, Fr =

�

�z
�r�z,t��z=z1�t�,

z1�0� = z0, E�0� = E0. �1�

Here z1�t� and v�t� are the coordinate and the velocity of the
ejected electron; Uc�z� ,Uc

im�z� the potentials of interaction of
the electron with the adsorbate core and its time-independent
electrostatic image �see Eq. �12��; Fr is the force acting on

PHYSICAL REVIEW B 81, 193413 �2010�

1098-0121/2010/81�19�/193413�4� ©2010 The American Physical Society193413-1

http://dx.doi.org/10.1103/PhysRevB.81.193413


the moving electron from the charge density induced in the
metal; �r�z , t� is the induced potential. In Eq. �1�, E�t� is the
energy of the electron that does not include the contribution
determined by the response of the metal, E�=E0+A���,
where E� is the energy of the ejected electron and A���
�A����0� is the total work done by the response force. The
key point of our study is computation of the response force
self-consistently with the trajectory of the electron.

The charge density of the ejected electron moving along
the trajectory z1�t� is

�e��� ,z,t� = − �2������z − z0���− t� − �2������z − z1�t����t� .

�2�

We have to compute the response force acting on the electron
which at t	0 is at the point R� = �0,z1�t��. Within the linear-
response theory, the surface potential induced by an external
charge density can be conventionally calculated in terms of
the kernel W��� ,z ,z� ,
�,

�r��� ,z,t� =	 d2K� d�dz�ei�K� ���−�tW̃�K� ,z,z�,���̃e�K� ,z�,�� .

The Fourier transforms are determined as follows:

W��� ,z,z�,t� =	 d2K� d�ei�K� ���−i�t

�2��3/2 W̃�K� ,z,z�,�� . �3�

The response potential is a sum of two terms,

�r��� ,z,t� = �r1��� ,z,t� + �r2��� ,z,t� , �4�

corresponding to the two densities in Eq. �2�, respectively;
the Fourier transforms of those densities are

�̃1�K� ,z,�� =
1

�2��3/2��z − z0�
i

� − i0
, �5�

�̃2�K� ,z,�� = −
ei�
�z�

�2��3/2��z − z0�
d


dz
. �6�

Here the function 
�z� is the inverse to z1�
� function. We

take the response kernel W̃�K� ,z ,z� ,�� within the specular
reflection model,11

W̃�K� ,z,z�,�� =
e−K�z+z��

�2��1/2K
g�K,�� , �7�

g�K,�� =
�s�K,�� − 1

�s�K,�� + 1
�8�

with the simplest single surface-plasmon-pole approximation
for the surface dielectric function �s�K ,��,8

�s�K,�� =
��� + i� − �K − �K2 − K4/2

��� + i� − �p
2 − �K − �K2 − K4/2

. �9�

The surface plasmon is determined with equation ��K ,��
+1=0 �Ref. 11� that leads to the dispersion law,

�sp�K� = ��p
2/2 + �K + �K2 + K4/4 − i/2



�p

�2
�1 +

�K

�p
2 + K2� �

�p
2 −

�2

2�p
4� − i/2. �10�

Thus, the parameters entering the dielectric function param-
etrization can be directly related to the surface-plasmon dis-
persion �sp�K�=�sp+aK+bK2,

�p = �2�sp, � = 2a�sp, � = 2�spb + a2, �11�

the parameters �sp , ,a ,b can be measured experimentally.10

In correspondence with Eq. �4�, the force acting on the
electron is a sum of the two contributions, Fr�t�=Fr1�t�
+Fr2�t�,

Fr1�t� = − 	
0

�

KdKe−K�z1�t�+z0�−t/2

��cos D�K�t +
 sin D�K�t

2D�K� � , �12�

Fr2�t� = Im	
0

�

KdK
e−Kz1�t�−t/2−iD�K�t

D�K�
G�K,t� , �13�

where

���K� = − i/2 � D�K� , �14�

D�K� =�−
2

4
+

�p
2

2
+ �K + �K2 + K4/4, �15�

G�K,t� �
�p

2

2
	

0

t

d
e
/2+iD�K�
−Kz�
�d
 . �16�

The force Fr1�t� depends only on the current coordinate of
the electron, although it is explicitly time dependent while
the force Fr2 depends on the entire previous trajectory z1�t�.

To analyze these formulas qualitatively, we omit the de-
pendence of D�K� on K,

Fr1�t� = −
exp�− t/2�
�z1�t� + z0�2�cos Dt +

 sin Dt

2D
 , �17�

Fr2�t� = −
�p

2

2D
	

0

t e−/2�t−
� sin D�t − 
�
�z1�t� + z1�
��2 d
 . �18�

Both formulas can be interpreted with the conventional no-
tion of the image charge. The force Fr1 is rather trivial: it is
the force due to the oscillating and decreasing charge fixed at
the initial image charge position z=−z0. The force F2r is due
to the image charge which is spread over the mirror of the
electron trajectory �−z1�t� ,z0� with the linear charge density
��t1� depending on time t1= t−
 as ��t1�
=�2e−t1/2 sin�Dt1� /2D.

Two limit cases deserve attention. First, let us assume that
the charge moves very slowly at t	0. In this case, z1�t�
�z0 and
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Fr2�t� � −
1 − e−t/2�2D cos Dt +  sin Dt�/2D

4Dz0
2 . �19�

The sum of the induced forces Fr1+Fr2 gives a conventional
force in the adiabatic approximation, −1 /4z0

2. The second
case is a limit of large t. In this case, both z1�t� and z1�
� are
large and the integral over time in Eq. �18� is determined by
the contribution from 
 close to the final time t. In this case,
Fr2�t� coincides with the force given in Eq. �19� with a sub-
stitution z0→z1�t�. Since in the large-t limit, the force Fr1
decreases exponentially, the response force on the electron
becomes close to the conventional attraction to the moving
image charge, Fr�−1 /4z1

2�t�. These two limit cases corre-
spond to the two stages of the process discussed above. The
force Fr1�t� oscillates with the surface-plasmon frequency
and decreases exponentially with the plasmon decay rate.
The adiabatic image potential can be obtained in the limit
→�. Taking into account the surface-plasmon dispersion,
one obtains in this limit,

Fad
r �z1� = − 	

0

� �p
2e−2Kz1KdK

�p
2 + 2�K + 2�K2 + K4/2

. �20�

The absolute value of this force is less than the conventional
image potential, which follows from this equation with the
surface-plasmon dispersion being neglected. The term linear
in K in the plasmon dispersion leads to a change in the as-
ymptote of the response force at large z, Fad

r �−1 /4�z
+�z�2 , �z=a /�sp, that corresponds to the shift of the image
plane into the metal. The linear term in the surface-plasmon
dispersion was first discussed by Feibelman,12 who related
the linear K contribution in the surface-plasmon dispersion to
the shape of the potential surface barrier.

Let now discuss the results of numerical computations.
We consider the metal surface with the parameters of surface
plasmon obtained experimentally in the case Ag�110�:10 �sp
=3.70 eV, =0.1 eV, a=1.4 eV A, b=1.3 eV A2. We
consider the adsorbate, placed at Zad=3.5 a.u. that corre-
sponds to the case of a heavy alkali adsorbate �e.g., Cs�. The
initial position of the electron is set z0=Zad+0.2 a.u. For the
relevant potentials, we take the simplest representation valid
in the case of ionization of the alkali adsorbate, which do-
nates a loosely bound electron to the metal surface, being
initially adsorbed in a state of one-charged positive ion,

Ucore = −
2

�z − Zad�
; Ucore

im =
2

�z + Zad�
. �21�

In Fig. 1�a�, the response force acting on a charged par-
ticle moving from the point z0=3.7 a.u. with constant veloc-
ity is plotted in comparison with the adiabatic force. One can
see that at small z, the force is rather close to −1 /4z0

2, being
determined at the initial stage by the “frozen” image charge
distribution. At large z, the forces converge to the corre-
sponding adiabatic dependencies, which are different for the
two types of the surface-plasmon dispersion considered. The
convergence for small velocity is much faster but in all the
cases, we observe oscillating dependence of the force on the
z coordinate.

In Fig. 1�b�, the z dependence of the work A�z�

=�z0

z Fr�z�dz done by the response force on the electron
ejected from the adsorbate E0 is plotted for various values of
the excitation energy E0. It is clear that at the initial stage,
the work is very close to the work by the fixed initial image
charge 1 / �z+z0�−1 / �2z0�. There are some weak oscillations
in A�z� at intermediate z. Then this dependence becomes
very similar to the adiabatic dependence but shifted by the
work performed at the initial stage. The intermediate region
increases with increase in E0, as well as the work accumu-
lated in this region.

In Fig. 2, the total work A��� is plotted as a function of
the excitation energy E0. The total work is sensitive to the
dispersion of the surface plasmon. It changes in electron volt

(b)

(a)

FIG. 1. �Color online� �a� The response forces Fr�z� on the
ejected electron are plotted. The solid �black� line shows the adia-
batic force for the dispersive plasmon case and the dashed-dotted
�black� line corresponds to the nondispersive surface-plasmon case.
The dashed �red� line with circles corresponds to the response force
acting on an electron moving with constant velocity v=0.01 a.u.
and dashed-dotted line with triangles for v=0.1 a.u. in the case of
dispersive plasmon. For the nondispersive case, diamonds �blue�
corresponds v=0.01 a.u., solid �red� line with triangles—v
=0.1 a.u. �b� The work by the response force Fr on the electron in
dependence on the electron coordinate. The electron is ejected from
the point z0=3.7 a.u. in the case +2-charged core. The �blue�
dashed lines are A=1 /4z−1 /4z0 �top line� and A=1 / �z+z0�
−1 /2z0 �bottom line�. The solid �black� lines correspond to the
nondispersive surface plasmon, the solid �red� lines with circles
give the results for dispersive surface plasmon. The curves corre-
spond to E0 equal to 0.2, 0.5, 1.0, 1.5, and 2 a.u. from top to bottom.
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range when the excitation energy changes in 10 eV range.
This dependence can be observed with the modern sources of
the extreme ultraviolet—soft x radiation.

The minimum value of the energy E0 which is necessary
for ionization depends on the dispersion of the surface plas-
mon. For the adiabatic potential, the threshold energy is
Ethr

ad =0.0676 a.u.=1.84 eV, in the case of the nondispersive
surface plasmon Ethr

non-disp=0.0834 a.u.=2.27 eV, and in the
case of the dispersive plasmon Ethr

disp=0.0767 a.u.=2.09 eV.
Summarizing, we have described a general phenomenon

in dynamical relaxation of the electron system of a metal

caused by a fast electron ejected from an adsorbate perpen-
dicular to the metal surface. The conventional theory of
metal surface response based on the idea of image charge
presumes the motion of a charged particle to be adiabatically
slow. This assumption is obviously broken in the case of
photoionization of the internal shell of an adsorbate. In this
case, the ejected electron moves quite fast and at the first
stage of the process, the charge distribution in the metal re-
mains frozen. The force from the metal response charge dis-
tribution can be universally represented as a sum of two con-
tributions. The first contribution is due to the oscillating and
decreasing initial image charge fixed at the mirror point of
the initial position of the electron. The second force can be
interpreted as a force from the image charge spread along the
mirror line to the electron trajectory with oscillating and de-
creasing linear charge density. The work done by the dy-
namical response force on the ejected electron is larger than
that obtained within the adiabatic assumption. The additional
energy loss depends on the ejection energy of the ionized
electron and this dependence can be observed experimen-
tally.
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